CODEN:LUTEDX/ATEIE-5409)/1-57(2019)

Genuino/Arduino Compatible Board
Using the ATmega M1-family of
Microcontrollers

C
0
o+

v

-

O
o+

)
<
O

C

©

@)

C
—

)

)
=

@)

C
L
©

U
.
o+

U
v
LL

Simon Wrafter

Division of Industrial Electrical Engineering and
Automation Facultyof Engineering, Lund University

Industrial

Genuino/Arduino compatible board
using the ATmega M1-family of
microcontrollers

Simon Wrafter

Industrial Electrical Engineering and Automation
Lund University, Sweden

LUNDS UNIVERSITET

Lunds Tekniska Hogskola

10th June 2018

Abstract

Arduino is a suite of software and hardware designed for the Atmel ATmega family
of microcontrollers. In this project the Arduino suite has been adapted for the AT-
mega32M1 with the intent of utilising the built in three phase motor controller and
CAN bus interface, making it easier to quickly prototype electric vehicles or other
new applications.

There are a number of subtle differences between the ATmega32M1 and the
ATmega328P used in the Arduino UNO. The hardware and software has therefore
had to adapted and extended to fit the new microcontroller.

Furthermore a Motor Shield was designed and produced for the three phase mo-
tor controller of the ATmega32M1. On the Motor Shield there are three high/low-
side gate drivers and six power MOSFETs capable of working at up to 60 V produ-
cing an estimated maximum 2 kW of power.

The overall design has proven successful with some minor bugs remaining. By
relaxing the design requirements somewhat, much more powerful motors could be
supported further extending the range of applications of the design.

Sammanfattning

Arduino &r en hardvaru- och mjukvarusvit designad for Atmels ATmega familj av
mikrokontroller. I detta projekt har Arduinosviten anpassats for ATmega32M1 med
avsikt att nyttja den inbyggda trefasmotor-kontrollern och CAN bus kommunika-
tionen. Malet ar att gora det ldttare att utvekla prototyper till elektriska fordon eller
andra applikationer.

Det finns ett antal mindre skillnader mellan ATmega32M1 och ATmega328P
fran Arduino UNO. Bade hardvaran och mjukvaran har darfor anpassats for att passa
med den nya mikrokontrollern.

Dartill har en Motor Shielddesignats och tillverkats for trefasmotor-kontrollern i
ATmega32M1. Pa denna finns det tre hog/lag-sida gate-drivare och sex effekt MOS-
FETar som kan arbeta vid upp till 60 V och producerar uppskattningsvis maximalt
2kW.

Den overgripande designen har visats vara framgangsrik, &ven om det finns vis-
sa kvarstdende forbattringspunkter. Genom mer tilldtande designrestriktioner kan
kraftfullare motorer stodjas och applikationsomradet for designen breddas.

Foreword

The idea for this thesis project has been with me for some time, so to get the oppor-
tunity to execute it according to my own ideas and adaptations has been an exciting
experience.

However, I would never have succeeded without the help and support of those
around me. Throughout I have relied on the helping hand of Freddie Olsson who
supported me with his knowledge of power electronics and electric motor systems.
His input has greatly influenced component selection, system design, and software
implementation for which i am greatly thankful.

A big thank you also to David Bengtsson for helping with the software imple-
mentation of the CAN bus interface, allowing me to further concentrate on the hard-
ware design and core software implementation.

Gunnar Lindstedt and Bengt Simonsson of the Industrial Electrical Engineering
and Automation department at Lund University have been supportive and allowed
me to work freely and find my own way. A project like this would not be otherwise
possible. Thank you for giving me that freedom.

When work has been difficult I have had the unfaltering support and encourage-
ment to push on from my family. Thank you for keeping me going.

Lastly I extend a thank you to the Uniti team for this opportunity, deviating from
the main focus of their project.

Acronyms

CAN Control Area Network. 1, 6, 9—12, 20, 23, 26, Glossary: CAN
DAC Digital to Analogue Converter. 10, 19, 20, 26

ECAD Electronic Computer-Aided Design. 2, 7, 8
EEPROM Electrically Erasable Programmable Read-Only Memory. 20

EMS Electronics Manufacturing Services. 27
GPL GNU Public License. 8, Glossary: GPL

I2C Inter-Integrated Circuit. 10, 20, 22

IDE Integrated Development Environment. 2, 7, 13, 18, 19, 24, 26
JSON JavaScript Object Notation. 19

LIN Local Interconnect Network. 9, 10, 18, 19, 22, 25

LUFA Lightweight USB Framework for AVRs. 18, 24

MCU Microcontroller Unit. 1-4, 7, 9-13, 18-20, 23, 24, 26-28, 30, 33

MOSFET Metal-Oxide—Semiconductor Field-Effect Transistor. 13—17, 38
NRWW No Read While Write. 9, 22

PCB Printed Circuit Board. 6-8, 12-14, 24
PSC Power Stage Controller. 1, 3, 9-11, 16, 20, 26

PWM Pulse Width Modulated. 1, 3, 10, 20, 21, 24
RWW Read While Write. 9

ii

Acronyms

SPI Serial Peripheral Interface Bus. 10, 20, 21

UART Universal Asynchronous Receiver/Transmitter. 9, 18-20, 22, 25

USB-IF USB Implementers Forum. 18, 25

1ii

Glossary

Bootloader

In this case, a program residing in protected memory that runs before the main
code. Definitions may vary.. 2, 7-9, 18, 22, 24, 25

CAN
A serial communications bus used primarily in automotive applications.. ii,
1,8, 13

Creative Commons

A set of licenses freely available with the purpose of promoting shared cultural
and artistic work.. 8

GPL

A common license used for free software.. ii, 8
Mil
Unit of measurement, 1/1000th of an inch.. 16, 17

Peripheral

An ancillary device used to put information into and get information out of
the computer [1].. 1, 3, 9, 11, 13, 18-20, 25, 26

Shield

An add-on board for Arduino that clips in to the pinheaders.. 1-5, 7, 8, 13,
23, 24, 28

iv

Table of Contents

Foreword
Acronyms

Glossary

1 Introduction
1.1 Background
1.2 Uniti ARC

1.2.1 Hardware
1.2.2 Software
1.3 Uniti ARC Motor Shield
1.3.1 Hardware
1.3.2 Software
1.4 PriorWork.
141 Arduino..........
1.4.2 Porting Efforts
1.4.3 Motor Shield

1.5 Project Limitations

2 Methodology

2.1 Process

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6

2.3 Tools

Feasibility

Concept/Target generation

Design
Hardware Manufacturing .
Software creation
Testing & Verification . .
2.2 Open Source

ii

iv

Glossary

3 Results 9
3.1 Evaluating the Microcontroller 9
3.1.1 Feasibility. 9

3.1.2 Peripherals 9
3.1.3 Package&Pinout. 10

3.2 Pin & Function Mapping 11
3.3 ARCDesign. e 11
3.3.1 Component Selection 11

3.3.2 Schematics 12

3.3.3 Layout 12

3.34 Verification 13

3.4 Motor Shield Design, 13
3.4.1 Component Selection 13

34.2 Schematics 16

343 Layout 16

3.4.4 Verification L o 16

3.5 Manufacture 17
3.6 Software 17
36.1 USBlInterface. 18

3.6.2 Bootloader 18

3.6.3 IDEIntegration 18

3.6.4 Porting Arduino Lo 19

3.6.5 NewlLlibraries. 20

3.6.6 Windows Driver 21

3.7 Testing e e e e e e e 21
4 Discussion & Conclusion 22
4.1 Feasibility 22
4.2 Hardware Design 22
421 ARC e 22

422 MotorShield 23

4.3 Software e 24
431 ATmegal6U2andUSB. 24

432 Bootloader 25

433 ArduinoCore 25
434 NewCode. 26

4.3.5 Distribution and IDE Integration 26

4.4 Manufacture and Testing 27
45 FutureWork 27
4.5.1 MCU Re-Selection & ARC Layout 27

4.5.2 Motor Shield 27

4.5.3 Codeimprovements 28

vi

Contents

Appendix A Pin Mapping
Appendix B Uniti ARC Design Files
Appendix C Motor Shield Design Files

References

vii

29

32

37

45

1. Introduction

This project has been a back-of-the-head idea for some time. In this section the
background of the project is described as well as the basic implementation idea.

1.1 = Background

Hobbyist or Maker projects seldom use motors or components that draw more power
than a few Watts at most. Arduino who are at the centre of hobbyist electronics,
have a now retired product called Arduino Motor Shield [2] designed for running
DC motors atup to 4 A and 5V to 12 V. For higher power applications the builder
is required to design custom driver stages.

Motors running on alternating current, however, are not possible to control dir-
ectly using an Arduino UNO or any of its most common clones. Commercially
available AC motor drivers are proprietary and expensive, non of which are geared
towards the maker community or designed for use with a Arduino.

During the course Formula Student (MVKNO5) [3,4] at Lund University, it be-
came apparent that the Atmel ATmega32M1 [5] Microcontroller Unit (MCU) used
was capable of running the Arduino software. For the purposes of Formula Student
the ATmega32M1 was used due to its integrated Control Area Network (CAN) [6]
controller. It also possesses a peripheral branded as Power Stage Controller (PSC)
which is a single timer connected to three pairs of complementary output pins. The
complementary output pairs each produce Pulse Width Modulated (PWM) signals
such that while one pin is driving a high signal the other pin in the pair is held low,
and vice versa. These three output pairs can be used to control three phase motors,
syncronous or asyncronous alike, as well as for that matter two- or single-phase mo-
tors. At the time it was not possible to further investigate this possibility, and it was
not picked up until a year later at Uniti Sweden AB [7].

1.2 Uniti ARC

The decision was made at Uniti to develop an Arduino UNO clone using the AT-
mega64M1, which is in all respects identical to the aforementioned ATmega32M1

Page 1 of 45

1. Introduction

apart from available memory. However, due to limited component availability and
cost the ATmega32M1 was selected for use in the first prototype design to be re-
placed later. This thesis represents the first design iteration.

The name Uniti ARC was decided upon for this board, and will be used in this
report in reference to it.

1.2.1 Hardware

To maximise the use cases of the ARC the choice was made to make it identical
in size, shape, and pinout to the Arduino UNO. Thereby ensuring compatibility
with existing example projects, shields, and other product extensions. All design
files for the UNO are freely available under a Creative Commons Attribution Share-
Alike [8] licence from the official product website [9]. The available design files
are for Eagle [10], a common low-cost Electronic Computer-Aided Design (ECAD)
tool popular with hobbyists. By basing the new board on the UNO the design effort
is lowered by only needing to alter parts of it rather than redesigning everything.
The process is broken down into subtasks as follows:

* Pin-mapping for Arduino compatibility.

* Board design, adding ATmega32/64M1 and other additional components
while retaining the board outline.

* Manufacturing, PCB sourcing and hand soldering.

Design files for the Uniti ARC are available on GitLab [11].

1.2.2 Software

All code related to the Arduino products are released under the GNU General Public
Licence, Version 2 [12] meaning that everyone is free to access and modify the code.
This code is available on GitHub [13].

For the Uniti ARC to perform as an Arduino clone there are a number of steps
to take to achieve this:

* Port code for the ATmegal6u2 used as the boards USB interface.
+ Port bootloader to ATmega32/64M1 MCU.

* Method of adding entry to Arduino Integrated Development Environment
(IDE) ‘Boards’ menu.

* Port Arduino libraries to ATmega32/64M1 MCU.

* Add code for new features not found in the UNO or other Arduino products.

Page 2 of 45

1. Introduction

e Create Windows driver for Uniti ARC.

The tasks vary greatly in complexity, where some tasks are merely a matter of
changing a few lines of code to reflect the new setup, others are rather invasive with
large rewrites of code sections.

All code for the Uniti ARC is available at GitLab [14].

1.3 Uniti ARC Motor Shield

As mentioned in Section 1.1 ‘Background’ the ATmega M1-family of MCUs have
a special peripheral called PSC. Intended for use in high power applications, it con-
sists of a single timer that controls three pairs of output pins capable of generating
high frequency PWM signals. There are several uses for a PSC, perhaps the most
prominent is the control and running of three phase motors for which the Motor
Shield is designed.

1.3.1 Hardware

No previous design is available to modify for this part of the project, a complete
new design is required. Inspiration has been taken from Shane Colton’s ‘Hexbridge’
design [15], a private project published on his blog. The ‘Hexbridge’ is intended
for use with a Arduino UNO, but it does not have the PSC peripheral so the process
of generating the three sinusoidal waves relies on a less robust control process and
more advanced MOSFET gate drivers.

The design targets of the Motor Shield were:

« Fit onto the Uniti ARC pin headers.

* Board allowed to be larger than Uniti ARC.

* Features available in the PSC do not need to be present on the Motor Shield.
* Galvanic separation between Motor Shield and Uniti ARC.

* Voltage limit at 60V, current draw limit dependant on board design.

* Possibility to modify board for high voltage applications.

» Temperature sensing, protect transistors from overheating.

» Back-EMF voltage sensing, output only in logic levels.

- Bonus: further additions that enhance or expands the usability of the Motor
Shield may be added later.

Page 3 of 45

1. Introduction

1.3.2 Software

No component on the Motor Shield is programmable or provides a communication
interface. There is therefore no additional specific code to write for it, other than a
Uniti ARC library making features of the Motor Shield as easy as possible to use.
Such a library should:

» Take speed as an input and run a motor independently.
* Have an encoder interface.
* Be able to start a motor from a complete standstill.

* Run a motor by encoder of back-EMF alone.

1.4 Prior Work

This thesis project is a derivative work primarily based on that from Ardu-
ino/Arduino, but also on on prior efforts to port the software to the ATmega32/64M1.

14.1 Arduino

The Arduino company website is the primary source for retrieving prior work with
the Arduino UNO [9], as this is the product upon which the Uniti ARC is based.
This is possible thanks to the open source licensing of the design files and software.
Arduino do not support the ATmega32/64M1 MCUs, nor do they have any three
phase motor controllers or higher power boards.

1.4.2 Porting Efforts

Two Arduino ports for ATmega32/64M1 are know of and freely available, one by
Stuart Cording [16] and a second by Al Thomason [17]. The effort needed achieve
compatibility with the Uniti ARC is significantly lowered by using as much of their
code as possible.

1.4.3 Motor Shield

No three phase motor shield is commercially available for the Arduino products.
However, hobbyist designs such as the Hexbridge [15] are available and the design
files can be downloaded and opened using Eagle [10]. The Hexbridge uses a differ-
ent method for controlling the motor output than the Uniti ARC, but inspiration can
be drawn from looking at the methods used.

Page 4 of 45

1. Introduction

1.5 | Project Limitations

The main focus of the thesis project is to complete the design and manufacturing of
the hardware for Uniti ARC and Motor Shield. The software is a side target, it is
necessary to prove the functionality of the system and integral to the design process
and helps with understanding the features; therefore it is included in this report.
Testing the Motor Shield dynamically in an advanced setup is a low priority target.

Page 5 of 45

2. Methodology

This chapter takes a few steps back, the method and process needs to be properly
analysed. A discussion on possibilities and opportunities of the project has been had
in Chapter 1 ‘Introduction’ and a set of targets there laid out. In this section further
details will be discussed and the working process defined.

2.1 Process

To reach the targets mentioned in Section 1.2 ‘Uniti ARC’ and Section 1.3 ‘Uniti
ARC Motor Shield’ a process or sequence of developmental steps need to be
defined. The steps are discussed below.

2.1.1 Feasibility

The very first thing that needed to be done is to verify that the project is at all pos-
sible. By finding prior art and gaining an understanding of the technical require-
ments feasibility can be proven.

2.1.2 Concept/Target generation

Concept generation is split in two parts, core and additional features.
The core concept is:

1. aboard as similar to the original Arduino as possible in terms of physical size,
pinout, programming interface, and software, adding two key features: CAN
and three phase motor control using the ATmega32/64M1.

2. aboard containing the power stage needed to power a small three phase motor.

Additional targets are less obvious requiring proper analysis of benefits versus
implementation cost to decide what is to be included and what to omit. Cost is
assessed through (in no particular order) design effort, Printed Circuit Board (PCB)
real estate, and component price. Benefits are assessed from a user perspective
based on ease of use, value added, flexibility, and feature availability in comparable
products.

Page 6 of 45

2. Method

2.1.3 Design

Despite the similarities between the ATmega32/63M1 [5] and ATmega328P [18] of
the Arduino UNO, the process of redesigning the board to fit the new MCU requires
some thought. The pinout of the two MCUs mentioned are very different, despite
this the pinout of the boards should remain unaltered with all functionality available
in the places where it is expected.

After achieving a satisfactory pinout the next step is to modify the Arduino UNO
[9] design files using Eagle ECAD [10]. Also work on designing the Motor Shield
can be started using the pinout configuration.

A two layer PCB design is used for both boards, in keeping with the design of
the majority of products by Arduino. A low layer count also helps any new users to
independently analyse and understand the design.

2.14 Hardware Manufacturing

A straight forward process of soldering components to the boards. Due to the large
number of surface mounted components some care needs to be taken in soldering
to avoid damage to components. In addition to a soldering pen, a hot air soldering
station is used to heat larger areas or components to avoid cold soldering joints.

2.1.5 Software creation

As mentioned in Section 1.2 ‘Uniti ARC’ To make the Uniti ARC programmable
using the Arduino IDE the process is as follows.

1. Port code for the ATmegal6u2 used as the boards USB interface.

2. Port bootloader to ATmega32/64M1 MCU.

3. Method of adding entry to Arduino IDE ‘Boards’ menu.

4. Port Arduino libraries to ATmega32/64M1 MCU.

5. Add code for new features not found in the UNO or other Arduino products.
6. Create Windows driver for Uniti ARC.

The original software for this available from Arduino’s GitHub [13], with the
adapted work available on GitLab [14].

Development work is done on a Linux platform using avr-gcc, avr-libc, avrdude,
make, and git to compile, program and manage the code. The physical programming
tool used is the AVRISP mk2 [19].

Porting the USB interface first along with the bootloader is important, once those
two components are functional the libraries can be ported one at a time and individu-
ally verified on hardware.

Page 7 of 45

2. Method

2.1.6 Testing & Verification

By programming the ARC with the required bootloader and running simple applic-
ations switching the outputs, the hardware can quickly be considered sufficiently
tested. The same goes for the CAN interface, running a test program bouncing
messages back and forth between two units is sufficient to consider the interface
functional.

Testing the Motor Shield is also kept on a functional level. Ensuring motors can
be run, but no further analysis of the performance on a component level is to be
done.

Finally a check will be performed to ensure that the design requirements listed
in Section 1.2 and Section 1.3 have been fulfilled.

2.2 | Open Source

Open Source is an integral aspect of this project. If Arduino had not released their
design files and code under Creative Commons [8] and GNU Public License (GPL)
[12] respectively, there would be nothing to build upon for this thesis. Open Source
is a great enabler and accelerator of new ideas and technological efforts.

The basic principle of Open Source is sharing. Sharing work files — CAD or
software — and in return who ever uses the files in derivative work has to publish
their work too.

2.3 Tools

Using a PC running a Linux environment the software tools used in this project are:

Cadsoft Eagle ECAD, schematic and PCB layout tool [10]
avr-gcc AVR compiler [20]

avr-libc standard C library for AVR [21]

avrdude AVR programming software [22]

make build automation tool [23]

git version control tool [24]

Hardware tools needed are:

AVRISP mk2 AVR programmer [19]

soldering station for manufacturing

hot air soldering station for heating larger areas and components
oscilloscope & multimeter for measuring signals and voltages

Page 8 of 45

3. Results

This chapter will describe the results and findings of the project.

3.1 | Evaluating the Microcontroller

Beyond the most notable additional peripherals, there are a number of other changes
to the design of the ATmega32/63M1 [5] compared to the ATmega328P [18] on the
Arduino UNO [9].

3.1.1 | Feasibility

There are a few similar projects available on the internet where the Arduino software
has been ported for ATmega32/64M1. The main source of inspiration for this project
has been the work done by Al Thomason [17], who in turn bases his work on that of
Stuart Cording [16]. Referring to these two, it is evident that it is feasible to build
an Arduino clone around an ATmega32/64M1.

Specifically the requirement for running the Arduino bootloader is that the flash
memory is divided into two parts, Read While Write (RWW) and No Read While
Write (NRWW) [5]. NRWW is the section where the bootloader is located such that
the MCU can download and reprogram itself. No further dissection of the technic-
alities of this feature is needed for this thesis, verifying the availability of the feature
is sufficient.

3.1.2 Peripherals

The ATmega32/64M1 [5] is used in this project for its CAN and PSC peripherals.
However, it also has a number of other additions and changes. Listed below are the
key features of the ATmega32/64M1 as listed in the datasheet [5].

* CAN 2.0A/B with 6 message objects - ISO 16845 certified

* Local Interconnect Network (LIN) 2.1 and 1.3 controller or 8-Bit Universal
Asynchronous Receiver/Transmitter (UART)

Page 9 of 45

3. Results

One 12-bit high-speed PSC
* One 8-bit, and one 16-bit general purpose Timer/Counter

* One master/slave Serial Peripheral Interface Bus (SPI) serial interface

10-bit ADC:

— Up to 11 single ended channels and 3 fully differential ADC channel
pairs

— Programmable gain (5x, 10x, 20x, 40x) on differential channels

— Internal reference voltage

— Direct power supply voltage measurement

* 10-bit Digital to Analogue Converter (DAC) for variable voltage reference
(comparators, ADC)

 Four analogue comparators with variable threshold detection

New features when compared to the ATmega328P [18] are: CAN, LIN, PSC,
differential analogue inputs to ADC, analogue comparators, DAC, four interrupts.
Missing from the list is Inter-Integrated Circuit (I2C) which can be rather easily
implemented in software. Also one 8-bit Timer/Counter is missing, meaning there
are only three PWM outputs available (a fourth output shares pin PE1 with XTAL1,
the crystal oscillator input). The PSC, however, can be configured to run in a mode
with independent outputs, thus allowing for an additional six PWM outputs for a
total of nine. Using both the Timers and PSC all six PWM outputs available on the
Arduino UNO are accounted for.

3.1.3 Package & Pinout

No through hole package is available for ATmega32/64M1 as used on the Arduino
UNO. Instead a TQFP-32 package was selected as the visible pins are easier to solder
by hand and make the purpose of the component a bit more obvious to a novice user.

There are four more pins on the ATmega32/64M1 as it is available in a 32 pin
package whereas the ATmega328P has 28 pins. To fit them to the board an additional
pinheader is added.

Pinout changes a lot between the two MCUs, Where the ATmega328P follows a
more common port-wise grouping of pins the ATmega32/64M1 has a rather random
pinout. It should also be noted that functions are not assigned to the same output
pins. The pinout therefore has to be completely reworked.

Page 10 of 45

3. Results

3.2 = Pin & Function Mapping

The process of mapping the pins of the ATmega32/64M1 to the required pins of the
board is divided into three steps.

1. Assign trivial pins.
2. Assign pin groups.
3. Select pins from groups according to best fit.

Pins 0, 1, 3, 11, 12, and 13 on the board are trivially assigned. Groups are
formed where the assignment of pins can be made in several ways, the selection is
done to ease the board layout as much as possible as well as ordering new features
in an as logical way as possible. The resulting pin map is available in Table A.2
of Appendix A. Peripherals bolded in the right half of the table correspond to the
feature named to the left, those not bolded do not correspond to a feature on the
Arduino UNO.

The CAN bus and analogue outputs have no counterpart on the Arduino UNO
and are thus placed in a new pinheader. An additional two pins are also needed to
output the high and low outputs from the required CAN transceiver. A total of six
outputs are needed on the new pinheader.

Pin mapping is done with little regard to the Motor Shield, other than having all
PSC pins on the digital side. Beyond that the resulting pinout will have very little
influence on the Motor Shield schematics and layout.

3.3 | ARC Design

With the pin map completed, it remains to properly select components before the
schematics and layout stage can be done.

3.3.1 Component Selection

New components have to be selected and added, old components used in the original
Arduino UNO design have to be checked. All resulting design files are available
through GitLab [11] and Appendix B.

3.3.1.1 Components Added
The new components added to the design are:

* ATmega32/64M1 MCU.

* Decoupling circuitry for AVCC and AGND.

Page 11 of 45

3. Results

* Microchip MCP2561 CAN transceiver.
* Decoupling capacitor for MCP2561.
+ Termination resistors for CAN bus, engaged by bridging two pairs of pins.

* New pinheader.

Adding a decoupling circuitry to the ATmega32/64M1 analogue supply pins is
not strictly needed. It was added as it is recommended in the datasheet and improves
the quality of analogue signal handling. Also the perceived reduction in quality of
the 5V and ground paths is mitigated to a degree by the decoupling circuitry. A
further analysis as to the necessity of the decoupling has not been done, but should
be completed before building any further prototypes.

Microchip MCP2561 is needed to translate the CANRX and CANTX signals of
the ATmega32/64M1 CAN controller to the proper high and low signal pair used
on the CAN bus. The choice of component is down to its popularity and known
quality.

A CAN bus has to be terminated at both ends by a 120 2 resistor. For the ARC
to be used at any point along the bus the termination resistors need to be selectable.
Activation the termination is accomplished by connecting the two pin pairs with
jumpers (JP1 in Figure B.1 of Appendix B).

3.3.1.2 Components Changed

The design files provided by Arduino [9] use a custom Eagle [10] library containing
most of the components on the board. To have proper control over the component
selection these were replaced by components available in the standard libraries and
available through suppliers. As an example the Reset button used on the ARC has a
different pin configuration from the one used on the Arduino UNO, forcing a redraw
of that area.

All changes were made in such a way that the original physical component is
still used.

3.3.2 Schematics

With the pin map done the schematics are fairly straight forward. Adding in the
ATmega32/64M1, Microchip MCP2561 [25], and surrounding support components,
it is a mere matter of connecting the correct corresponding MCU pins to their board
pins. The result of this work can be found in Appendix B, Figure B.1.

3.3.3 Layout

Achieving a good layout with in the restrictions of a two layer PCB is difficult. The
random nature of the ATmega32/64M1 pinout means that signal paths crossing each

Page 12 of 45

3. Results

other is more common than not. A lot of time was therefore devoted to making the
design and tuning it to produce best possible ground and 5 V, and to draw short paths
with as few vias between the two layers as can be achieved.

See Appendix B, Figures B.2 and B.3, for pictures of the two layers of the ARC
PCB. Following the first manufactured version of the ARC some faults were detec-
ted, they have been corrected in the design shown in Figures B.4 and B.5.

3.3.4 Verification

In Section 1.2 there are a number of design tasks listed. These tasks have been
mostly achieved, with the compromise that the pinout of the ARC board includes
some minor deviations from that of the Arduino UNO. These differences stem from
differences in the MCU pinout or peripheral setup, or in the case of the programming
pinheader to make place for the new CAN interface.

Also looking at the software tasks have these been completed. All old code
from Arduino has been ported, and code for the new features brought up to a basic
functional level. A windows driver (though unsigned) exists and the ARC can be
made selectable in the Arduino IDE.

3.4 = Motor Shield Design

As opposed to the ARC, the Motor Shield is not a modification of a prior design.
All components, schematics and layout are new to this shield.

3.4.1 Component Selection

The selection process of each component will be described following the signal path
from the pinheaders to the power transistors. Finally the support and monitoring
functions on the board are discussed. There are a number of decoupling capacitors
and similar on the board, these are of little interest to this discussion.

34.1.1 Signal Path

After entering the board the signal passes through a three main components, opto-
couplers, gate drivers, and the Metal-Oxide—Semiconductor Field-Effect Transistor
(MOSFET) transistors.

Optocouplers are used to galvanically separate and protect the MCU from the
power electronics and its higher voltages. A requirement for the optocouplers are
that they should be fast, short turn on and turn off times, in order to properly produ-
cing a copy of the signal at the switching frequency used. The optocoupler output

Page 13 of 45

3. Results

must support the working voltage of 12 V on the Motor Shield. To reduce the num-
ber of support components needed an active output (not open collector) is sought
for. For these reasons the Toshiba TLP2345 [26] is used.

To be able to supply the gate of the MOSFET transistor with enough charge to
turn on, and stay on, a gate driver is needed. For the Motor Shield the IR2110 [27]
from Infineon (formerly International Rectifier) is selected. The ATmega32/64 has
built in dead time control, it is therefore not a necessary feature of the gate driver.
The IR2110 gate driver can run at up to 500 V on the power side. IR2110 is com-
monly used in inexpensive inverters with much information and design assistance
available on the internet. After comparing to other options it was found to be the
best option for the job.

Lastly the MOSFET used is an Infineon IRFS3207Z [28] (formerly International
Rectifier). A D2PAK (TO-263) surface mount package is used, making it easier to
design for and mount on a PCB. Since the transistor is mounted to the PCB with
no direct physical contact to a heatsink other than through said PCB, the thermal
performance is reduced. However, by selecting a transistor with a suitably low
Rps(on) the power loses through heating are lowered. According to the manufac-
turer Rpg(on) = 4.1 m§) maximum for the IRFS3207Z. The low resistance paired
with maximum ratings of 75V and 120 A, makes it a good fit.

3.4.1.1.1 Support Components

Dissipating the heat produced in the MOSFET transistors is helped by the cooling
fins mounted over it. Fischer Elektronik FK244 13 D2PAK [29] is a good option for
cost, size, and thermal resistance given the form factor. Because the heatsinks are
soldered to the board they are live components and have to be kept apart to avoid a
short circuit.

A diode across VCC and VB, and a ceramic and electrolytic capacitor across
VB and VS form the bootstrap setup necessary for the IR2110. This circuitry holds
the charge needed to keep the high side transistor open for the duration needed.

3.4.1.2 Sensing

Temperature is measured at the three high side transistors due to space con-
straints. Close to the transistor there is a 22k() NTC thermistor (Vishay
NTCS0603E3223JMT [30]), as the temperature changes so does the resistance of
the thermistor. Thus, by dividing 5V across a normal 2.2 k{2 resistor and the ther-
mistor the measured voltage relates to temperature. Using the data points given by
the component datasheet the voltages for different temperatures can be calculated
and a second degree polynomial estimated as per Equation 3.1. An RC-filter is ap-
plied to avoid picking up to much of the switching frequencies. Since the heating of
the components is a rather slow process compared to the frequencies in the signals

Page 14 of 45

3. Results

a low cut-off frequency is chosen at roughly 700 Hz.

temp = —1.75-107* - v2, — 9.63 - 1073 - v, + 4.87 (3.1)

Keeping track of the motor position is important to correctly run a motor. For this
purpose a voltage sensing system is implemented based on back-EMF. The circuitry
is pictured in the upper right corner of Figure C.1 of Appendix C. A virtual ground
is created by connecting the three phases through resistors. This virtual ground is
then compared to each phase individually detecting the zero point crossings. The
comparator output identifies one of six position ranges of the rotor [31]. An RC
filter removes the switching frequency from the measured voltages, the capacitor is
chosen so to induce as low a timing delay as possible. The Motor Shield is separated
from the ARC by an optocoupler.

No further sensing is available for measuring the actual voltages or any of the
currents on the board. However, these can be added externally by the user of the
Motor Shield. This is due to lack of space on the board and cost of components to
pass through analogue signals without breaking the galvanic separation.

3.4.1.3 Power Supply

A standard 5.08 mm pitch screw terminal block is where the motor battery connects
to the board. The voltage is applied directly across the three electrolytic capacitors
by the MOSFET transistors with no protection if the voltage is applied in reverse.
The 12V regulator is protected by a diode for this purpose.

Reading the MOSFET gate driver datasheet, a 10 V to 20 V regulator is needed
to power them. Texas Instruments TL2575HV-12IKTTR [32] outputs 12V and 1 A
(maximum), and can be supplied with up to 60 V. Four additional components are
required for the TL2575HYV, the datasheet describes the process for selecting the
correct values. Assuming a 48V supply the resulting values are: 330 nF' input ca-
pacitor, 470 pF output capacitor, 330 nH output inductor, and a Schottky diode.

3.4.1.4 Special Features

Two modifications of the Motor Shield are possible. Special design features enables
modifying the board to run higher power transistors, or work as an MPPT to charge
a battery from a solar panel. Though the features are made available, no further
implementation details or system design has been prepared.

3.4.14.1 High Voltage Cut Off

Should the 60 V limit of the system not be high enough, or the power output to low,
the board can be modified to drive external transistors. After the three IR2110 [27]
MOSFET gate drivers (along the signal path) there is a row of nine unused drill

Page 15 of 45

3. Results

holes. By cutting the board in half just beyond these more powerful transistors can
be connected working at voltages of up to 500 V. However, higher voltages than
60 V should not be applied to the MOSFET gate driver circuitry.

3.4.1.4.2 MPPT

Maximum Power Point Tracking is commonly used to maximise power extraction
from solar panels. A section of traces near the third pair of transistor can be cut,
thus isolating the high side transistor of that pair. Two drill holes are available to
solder in a 5.08 mm pitch screw terminal next to the heatsink for connecting a solar
panel. The floating transistor pair can thus be used to regulate the impedance seen
by the panel, with the remaining two pairs used in a h-bridge configuration to do the
charging. Some external components are necessary to implement an MPPT system.

3.4.2 Schematics

The schematics are available in Figure C.1 of Appendix C. Starting with the signal
path (left half of figure), the schematics is divided in to sections with optocouplers,
gate drivers, and MOSFETs. All decoupling capacitors and similar support com-
ponents are drawn in at their respective position. On the right hand side are (from
top to bottom) the boost capacitors for the transistors, the power supply, temperature
sensing and pinheaders, and lastly the back-EMF sensing circuitry.

3.4.3 Layout

Appendix C, Figure C.2 shows the top layer design and component placement, Fig-
ure C.3 shows the bottom layer of the board as manufactured. Further improvements
have been made and the latest design is pictured in Figures C.4 and C.5.

All 12V electronics is fitted to the left of the design between the two rows of
pinheaders. Signals coming from the PSC are kept together and have their own
separated area with 5 V and ground by the optocouplers.

Due to higher voltages and greater currents the clearances between wires, pads,
and vias are elevated to 16 mil for different signals and 12 mil for same signal.

The four mounting holes of the Uniti ARC are included with an additional two
to the right of the MOSFET transitors.

3.4.4 Verification

In Section 1.3 there are a number of hardware requirements to design by. These
have been adhered to, the larger Motor Shield fits onto the ARC, providing gal-
vanic separation between the two through optocouplers. The shield has temperature

Page 16 of 45

3. Results

sensors by the MOSFETSs, and back-EMF voltage sensing to determine the position
of the rotor when the motor is running.

However, the softweare targets have not been completed to the same level. Suf-
ficient code has been created to get a motor running, though not as a complete and
stand alone library or with as simple an interface as initially wanted.

3.5 Manufacture

Running conditions for the two boards are different, especially for the Motor Shield
care had to be taken to setting the manufacturing parameters correctly. The para-
meters used are shown in Table 3.1.

Parameter Uniti ARC Motor Shield
Layers 2 2
Component load Single sided Single sided
Board thickness 1.6 mm FR4 1.6 mm FR4
Copper thickness 35 pm 105 pm
Clearance 10 mil 16 mil

Vias Covered Exposed
Soldering pad plating Tin Tin

Table 3.1: Manufacturing parameters for the two boards.

The thicker layer of copper on the Motor Shield is for it to be able to handle the
higher currents it is purposed for. Leaving the vias without solder mask comes in
handy when evaluating new designs, vias should be covered in a final design.

All prototype boards were completely hand soldered using a hot air and a stand-
ard soldering station.

3.6 Software

Software development is divided into a series of steps. The software is fully based
on the previous work done by Arduino, similar to the ARC hardware design. All
code is available through GitLab [14].

To differentiate between the prototype based on the ATmega32M1, and the pro-
posed final version based on ATmega64M1, two separate boards are introduced in
the software under the names of ”Uniti ARC beta” and ”Uniti ARC” respectively.

Page 17 of 45

3. Results

3.6.1 USB Interface

Programming the ARC using nothing more than a USB type B cable is an important
feature. All USB communications are handled through a second MCU, the AT-
megal6U2 [33], embedded in the design specifically for this purpose.

The software for the ATmegal6U2 is made up of two parts, the bootloader
(uniti_arc-usbdfu) and application (uniti_arc-usbserial). Both parts have to be com-
piled against LUFA (Lightweight USB Framework for AVRs) [34] version 100807.
Instructions for compiling the code and programming the MCU are available in the
GitLab repository.

The amount of code to alter is small, both parts of the software contain a pair of
files called Descriptors.c/.h. In these files information regarding the Uniti ARC is
added. Files and folders are renamed to reflect the new product they are intended
for. The makefiles [23] are altered to properly compile for the Uniti ARC, also
erroneous references to the MCUs AT90USB82 and ATmega8u?2 are removed.

3.6.1.1 USB Vendor and Product ID

A unique pair consisting of a VID and PID are needed for each USB enabled product.
The VID signifies the company behind the product, and the PID the product itself.
Both IDs are made up of four hexadecimal digits for a total number of 65536 pos-
sibilities. VIDs are sold by the USB Implementers Forum (USB-IF) [35] at a price
of $5000. The budget for this project was insufficient to carry such a cost, to be able
to properly identify the Uniti ARC when connected to a computer a VID and PID
pair was acquired through the pid.codes project [36].

3.6.2 Bootloader

Similarily to the USB interface, only minor edits are needed to make use of the Opti-
boot bootloader on the ATmega32/64M1. UART functions differently on the AT-
mega32/64M1 as it shares peripheral with LIN, therefore the functions for sending
and receiving data have to be completely rewritten. An effort to port the bootloader
has previously been done by Stuart Cording [16], his edits lay the foundation for this
version of the bootloader. Further edits include removing some conditionals where
the specific circumstances of this project are known, such as soft UART which is
only used when there is no UART peripheral built in to the MCU.

3.6.3 IDE Integration

With the USB interface and bootloader ported the Uniti ARC has almost reached a
usable state. But to program it using the Arduino IDE a few additional files need to
be created.

Page 18 of 45

3. Results

First is the pins_arduino.h file, this file is used to define all board specific vari-
ables. Through the arrays and functions defined in this file the pins of the board is
converted to pins of the MCU. The file is located in the variants folder.

Secondly three further files are needed. Boards.txt contains information about
available MCU memory, how to program it and what core and variant to compile
against. Platform.txt specifies in detail the compilation and programming procedure
to the IDE. ATmega32/64M1 is not included in the version of avrdude [22] included
with the IDE, so to be able to program the ARC the avrdude.conf configuration file
is included.

Finally, the third step is to create an installable package and to distribute it. The
code files are compressed into a single tar.gz file and placed in a separate folder
of the project and pushed to GitLab [14], a JavaScript Object Notation (JSON)
file is also available in the same folder with information about each of the com-
pressed archives. By including the url (https://gitlab.com/uniti-arc/Arc/
raw/master/packages/package uniti_index. json) to the mentioned JSON
file in the ”Additional Boards Manager URLs” text field of the Properties window,
the Uniti ARC boards are installable and selectable through the Boards menu.

3.6.4 Porting Arduino

The bulk of the edits to the core section of the Arduino code base concern either
Serial communications, signal handling, or the new peripherals. Much of the new
code needed is imported from the work done by Al Thomason [17], his work is in
turn based on that of Stuart Cording [16].

3.6.4.1 Communications

As previously mentioned in Subsection 3.6.2 ‘Bootloader’, the UART peripheral
on the ATmega32/63M1 is combined with the LIN peripheral. All registers for
setting up the LIN/UART system are completely different and therefore all functions
relating to it need to be amended. Also since there is only one serial port available,
the files for the three further serial ports on the Arduino Mega [37] are removed.

USB communications are possible on some boards (most notably the Arduino
Leonardo [38] and Micro [39]) using an ATmega32U4 [40]. This is not possible with
the ATmega32/64M1 and the seven files that contain code for the USB peripheral
are removed along with any references to them in the remaining files.

3.6.4.2 Signal Handling

Configuring pins to be inputs or outputs remains identical with the addition of code
to handle the Analogue Differential Amplifiers, Analogue Comparators, and DAC.
Configuring said peripherals is done using the pinMode() function, the chosen unit is
set up and the physical pins associated are configured as required. When configuring

Page 19 of 45

3. Results

the comparators or amplifiers their input pins will be reconfigured regardless of their
previous state as this is impossible to check. Similarly, should one of the input pins
in use be reconfigured to be used in standard I/0 mode the comparator or amplifier
will be shut down.

Once configured the outputs from the comparators are read by the digitalRead()
function, amplifier output is read using analogRead(), and writing to the DAC is
done with the analogWrite() function.

The only changes needed to get all external interrupts working is to add sections
of code that handle the fourth available interrupt. The additions are simplistic as
they are identical in form to the first three interrupts.

3.6.4.3 Libraries

A few peripherals of the MCU are handled through separate libraries not part of the
immediate core code. These are Electrically Erasable Programmable Read-Only
Memory (EEPROM), SPI, 12C, and SoftwareSerial (a software implementation of
UART). They have not been worked on, though (with the exclusion of 12C) should
be a simple task of reviewing the code as the peripherals are unlikely to differ much
from the standard implementation of other ATmega MCUSs. I2C needs to be re-
placed by a software implementation as the hardware for it is not included in the
ATmega32/64M1.

3.6.5 New Libraries

Two new libraries are required to use CAN and the PSC on the Uniti ARC.

The CAN library is written by David Bengtsson based on his previous work with
the same MCU at Lund Formula Student. It is written in C++ and C with an API
similar in style to that for UART, SPI, and I12C.

The PSC can be run in two modes, one where the six PWM outputs are run
together in pairs, and one where they are configured individually. The first case is
used for three phase motors, where as the second mode offers PWM to those pins
that do not have a timer output on the ARC but do so on the Arduino UNO through
the usual analogWrite() function.

When running the PSC in the first mode described above, three sinusoidal sig-
nals phase shifted in software by 120 ° from each other are generated. A look-up
table containing the values of sin(x),x = [0..7/2] is declared, and by mirroring
the quarter period to the sought after intervals all three PWM duty-cycles can be
calculated.

3.6.5.1 Motor Shield

No Library specifically for the Motor Shield has been written or designed. To run a
motor the PSC library can be used directly. The PSC library provides functions to

Page 20 of 45

3. Results

set and update the PWM signals, effectively setting the angle of the rotor. A Motor
Shield library should run autonomously, updating the rotor position automatically
to achieve a requested rotational speed.

3.6.6 Windows Driver

Connecting the Uniti ARC to a Linux or Apple OSX computer works at first attempt
without additional software; Windows, on the other hand, requires a driver to be able
to communicate with it.

Writing the driver is done by creating a .inf file containing information of the
USB VID and PID, driver type, and more. Using the inf2cat command window
program, a .cat file is generated from the .inf file. The .cat file is what is installed
on computers to use the Uniti ARC. For proper distribution the .cat file needs to be
signed using an SSL-key supplied by one of the major cryptography companies. As
with the USB VID, the cost of doing so at this stage is out of scope for the project.
The driver can, however, be installed if the computer is booted in an insecure mode.

3.7 | Testing

By continuously programming the ARC with new versions of the software and run-
ning simple application the board design has proven functional. A minor design
error was detected early on where the SPI pins were not correctly connected to the
programming header. The fault was easily corrected by cutting the erroneous trace
and connecting a thin wire to the correct points.

Testing of the Motor Shield was done by powering a motor designed for an elec-
tric bicycle. The motor was successfully run and the hardware design can therefore
be considered functional. An issue was found with the diode protecting the 12V
regulator against application of reverse polarity; it is severely under-dimensioned
to handle the initial current draw as the voltage is applied to the board. A larger
diode should be used in its stead or, preferably, a redesign of the reverse polarity
protective circuitry be done to include also the transistors and gate drivers.

Page 21 of 45

4. Discussion & Conclusion

When designing any embedded system there are a number of design assumptions
(known or unknown) and choices (willing or unwilling) made. Even more assump-
tions are forced to be made to achieve a satisfactory ”one size fits all” result for a
general purpose product like Uniti ARC.

4.1 Feasibility

Despite some differences in the basic feature set (no 12C, combined LIN/UART,
random pinout), the fundamental similarities (AVR core, NRWW memory, etc.) are
the important parts to consider. This proves the software can be made to run on the
ATmega32/64M1 and properly interface with a computer. However, whether fitting
the components on to the area given on a two layer board was possible could not be
tested prior to doing the design work.

Assessing the amount of software work that would be required was also difficult.
No work had previously been done on the underlying Arduino structures, nor any
work with bootloaders or USB interfaces.

4.2 = Hardware Design

The two boards are discussed separately below.

4.2.1 ARC

Deciding to base the Uniti ARC fully on the Arduino UNO ECAD files lowered the
bar for getting started significantly. The circuitry for USB, power, etc. was already
there along with perhaps most importantly the board size and pinheader locations.
The datasheet for the ATmega32/64M1 [5] specifies an inductance and decoup-
ling capacitor be connected to the analogue power supply (AVCC, AGND). This re-
commendation can also be found in the ATmega328P [18] datasheet. The circuitry
is not included in the Geniuino UNO design but added to the ARC as a compens-
ation for the poorer ground plane. To test whether the inclusion is necessary the

Page 22 of 45

4. Discussion & Conclusion

digital ports can be set to switch at high frequencies while measuring the stability
of the analogue voltage supply.

Mapping the MCU pins to the board required proper planning. Certain functions
have to be on specific pins for the ARC to be compatible with the UNO, but to
achieve that there are many crossings and conflicts that have to be resolved in the
layout. With so many intertwined traces the risk for ground to be cut of at some point
and to not reach everywhere grows. A lot of time was spent redesigning sections
of the layout to allow for the ground plane to fit in. Following the first prototype
further improvements have been made by remapping some of the pins. The ground
planes are now much better and some signal paths shortened.

Including a CAN transceiver on the board makes the functionality easily access-
ible, and was therefore an obvious decision. The jumper pins were a necessity if the
ARC should be able to connect at any point of a CAN bus. Initial thoughts was to
use a surface mount switch but the availability and size of such a solution made it
difficult to implement.

ATmega32/64M1 has four more pins than an ATmega328P, being able to use
the additional pins was considered important. An early thought was to replace the
original power connector with a CAN connector, but routing space and the need for
special cables to use the feature made for the decision to place the high and low
CAN signals in a standard pinheader too. So, where should the signals be routed
too? One possibility would be to extend the board length and add the new pins
next to the original ones, this would add a lot of board area with only little added
value. The chosen solution is thus to place the new pinheader orthogonally to the
standard pins on the short side of the board. The first prototype as manufactured had
a standing pinheader, a problem with this option was soon discovered as the pins can
not be used if a shield is mounted on top. A 90 ° angled pinheader has replaced it
in the updated design. The programming header for the ATmega32/64M1 had to
be moved to make space for the new pinheader, even though this may cause some
compatibility issues with third-party shields that rely on it.

Over all getting a sufficiently high quality layout has proven the most challen-
ging part of working with the ARC. Eagle as a design tool is easy to use, however,
the limited functionality can make simple edits slow and the overall work flow te-
dious.

4.2.2 Motor Shield

With all logic and control electronics embedded in the ATmega32/64M1 the purpose
of the Motor Shield is to simply amplify the signals and provide sufficient power to
the connected motor.

The available area for component placement is very limited and further restric-
ted by the Arduino footprint. Perhaps by rethinking some of the design options a
better layout would be possible. For instance a different 12V supply design could

Page 23 of 45

4. Discussion & Conclusion

save space, what components this design would consist of has not been looked into.
Replacing the large electrolytic capacitors used with other lower options stacking
further shields on top of the Motor Shield would be possible.

To remove the reliance on a very specific optocoupler a signal transformer such
as those used in Ethernet applications may improve the part availability while redu-
cing cost.

IR2110 proved easy to work with. It does not add additional features to the
circuitry other than simply provide sufficient power to switch the gates of the tran-
sistors according to the incoming PWM signal. It is common for other similar gate
drivers to impose a dead-time between turning on and off the high and low side tran-
sistors respectively. But as this is done by the software adding on further margins
would be unnecessary.

Surface mount D2PAK transistors are a good option form a mechanical perspect-
ive; they are secured to the PCB and do not require fastening to a cooling block to
ensure they do not break off. One major drawback is the additional PCB area needed
to fit the transistors, another is the reduced cooling as all heat is transferred through
the PCB to the heatsinks.

The PCB is a two layer design with 105 pm of copper, adding two internal layers
for routing and placing components also on the back of the PCB would improve the
layout both with regards to signal paths and to power and ground planes.

Only a very rudimentary type of voltage sensing is available on the Motor Shield.
It would be preferable to have analogue voltage and current sensing on each of the
three outgoing phases. Properly implementing this while retaining galvanic separa-
tion and low design complexity could prove to be quite difficult.

4.3 Software

The Arduino software is not without its limitations, and writing in more functionality
poses some questions to be answered. The software development can be divided into
five parts, USB interface, bootloader, Arduino core, new code, IDE integration; to
avoid mixing things up they are discussed individually.

4.3.1 ATmegal6U2 and USB

There are a few errors to the ATmegal6U2 [33] makefiles that needed to be cor-
rected before anything could be compiled. The MCUs declared to the compiler and
avrdude is wrong, as is the memory position to write the bootloader to. Correcting
the MCU declaration was promptly done, however the memory position required
more investigation to correct.

Instructions for compiling the software is included in the readme files. It is
mentioned that the version of LUFA should be 100807, this was discovered to be a
requirement for the code to compile at all.

Page 24 of 45

4. Discussion & Conclusion

The second thing is the $5000 charged by the USB-IF [35] to provide a Vendor
ID. An exorbitant amount of money for a small project. USB-IF are the ruling body
behind the USB standard, they license the use of USB to all who make products that
use it. It is not possible to purchase a smaller subset of PIDs, and it is not permitted
according to the current license agreement for VID holders to further distribute sets
of PIDs. An attempt by Arachnid Labs [41] to provide PIDs to open source and
hobbyist projects was closed down after receiving a cease and desist letter. Trough
the project pid.codes [36], however, PIDs can be freely acquired. This is because
the VID used was issued before PID redistribution was prohibited by the USB-IF
license agreement.

As all the development work was initially performed in a Linux environment,
the issue of needing a driver for use with Windows was missed for some time. The
process of creating and signing a driver is very poorly documented by Microsoft
[42]. After finding and reading a blog post by David Grey [43] and other resources,
the necessary steps of creating a .inf file and generating a .cat file could be taken to
test out an unsigned driver. Installing an unsigned driver requires one to reboot the
computer in an unsafe mode where no security keys are checked. To sign the driver
a certificate has to be purchased from Globalsign, Verisign, GoDaddy or others, the
cost is approximately 200 €/year. The command line program Inf2Cat [44] creates
a .cat file from the .inf file, to install it Visual Studio 2015, the Windows SDK, and
Windows Driver Kit [45] all have to be downloaded and installed, totalling multiple
gigabytes of unnecessary and unused binaries.

All in all the major hurdles of a project such as this lies in the USB interface.
High costs and poor documentation from USB-IF and Microsoft creates a lock-out
effect for small or inexperienced projects. The actual work necessary to get the
ATmegal6U2 properly programmed, and a (unsigned) Windows driver is small.
Time is easily lost figuring out details.

4.3.2 Bootloader

Code changes necessary to get the bootloader are picked from Stuart Cording’s [16]
previous work. Due to the combined LIN/UART peripheral the UART code has
to be replaced. The code was simplified to an extent by removing unused options
for soft_ UART and other special cases. Further cleaning up of the code could be
possible, however as it is functional there is little need to do so at this point.

4.3.3 Arduino Core

Relying on Stuart Cording [16] and Al Thomason [17] the work effort to port the
Arduino core libraries was reduced to a rather simple task. Almost complete func-
tionality could be achieved very fast by simply copying their code. In most places
the new code is placed within pre-compiler conditional statements, retaining the

Page 25 of 45

4. Discussion & Conclusion

original Arduino code for other MCUs. As the code is meant specifically for the
ATmega32/64M1 it can be vastly simplified by removing those conditionals that do
not apply to that MCU. For instance all USB code has been removed as there is no
USB peripheral in the ATmega32/64M1.

4.3.4 New Code

Adding functionality can be done in two ways, as part of the core or as new libraries.
The DAC, differential amplifiers, and analogue comparators are added to the core,
whereas CAN and PSC are written as libraries.

Including the DAC, differential amplifiers, and analogue comparators to the core
is because of the low amount of code needed. Only a setup and read function is
needed, pinMode() and analogWrite(), analogRead(), or digitalRead() respectively
can serve that purpose.

Compiling a sketch against the Uniti ARC core with the additions mentioned
above adds considerable size to the produced hex file. Most added size comes from
the additions to pinMode(). The additional size caused could be kept down by redu-
cing the configurability of the peripherals or moving their code to separate library
files. Considering that the memory of the ATmega64M1 is double the size of that
in the ATmega328P the added code size might be acceptable. Further testing and
evaluation of different software implementations is needed but although it does not
fall within the scope of this thesis.

CAN and PSC are larger independent peripherals that require more complex
code to setup and use. Implemeting the necessary code in libraries is therefore an
obvious solution. The PSC implementation is specifically for controlling the MCU
peripheral and does not implement functionalities of the Motor Shield.

4.3.5 Distribution and IDE Integration

No complete guide for developing a custom core and distributing it is available in the
Arduino documentation. Most of the process is documented in a slightly fragmented
fashion, and the rest can be extrapolated by looking at existing packages. Once
figured out, the process is easy to follow and the distribution not very difficult to
do. Perhaps the way new packages are added to the IDE is a little complicated, but
that is only a minor issue.

To make it easier to create new release packages a Linux shell script was written
called packscript.sh, it is available on GitLab with the code proper.

Page 26 of 45

4. Discussion & Conclusion

4.4 = Manufacture and Testing

A disproportionate number of ARC boards were malfunctioning post manufactur-
ing. The large number of components and the package format of some of them (AT-
megal6u2 being QFN-32 etc.) made the soldering of components difficult. Using
an Electronics Manufacturing Services (EMS) to complete the manufacturing would
have saved time and reduced the number of faulty boards but at a much higher cost.

With the ARC being based on a previously widespread and well used design the
testing effort once operational was minor. By ensuring that the ported Arduino code
was functional the overall design could be approved.

Manufacturing the Motor Shield was much easier that the ARC due to the larger
and less sensitive components. Running tests on the Motor Shield depended heavily
on there being at the very least some rudimentary code available to run it. Because
of this the testing was not done until very late in the process. Also to guarantee that
it is fully functional further testing would be necessary.

4.5 Future Work

The design of the ARC and Motor Shield can be further improved by breaking some
of the imposed constraints. While some possible changes are minor, others would
affect the product at the core.

4.5.1 MCU Re-Selection & ARC Layout

For more computational power an ARM Cortex series MCU could be used, such as
the STM32F303RE [46] and many more from ST. As the name indicates the STM32
is a 32-bit MCU, clocked at 72 MHz such a device would heavily out-perform the
ATmega32/64M1. As an added advantage said MCU has an integrated USB con-
troller, consequently lowering the component count and therefore also cost. Moving
to a completely new hardware architecture would require a complete rework of all
code as well as a complete redesign of the ARC schematic and layout.

By not adhering to the Arduino form factor and pinout a small “embeddable”
version of the ARC could be made, moving the USB circuitry off-board. The board
could be made in four layers for improved routing and EMI performance. Higher
grade contacts for CAN, power, and IO-pins would further improve the ruggedness
of the product. Such a redesign would require a new Motor Shield.

4.5.2 Motor Shield

The Motor Shield design is limited by the Arduino pinheader footprint. Fitting all
components to one side, and routing on two, proved difficult. Introducing additional

Page 27 of 45

4. Discussion & Conclusion

routing layers and possibly moving some components to the bottom layer should
not only improve the trace lengths and ease the design effort, but also improve the
stability of the 12 V, battery voltage, and grounding layers. As a consequence of the
improved paths and traces, the board could be used for higher power applications.

Stacking multiple shields onto one ARC is impaired by the vertical space taken
by the capacitors used by the 12V supply. Moving components to the back of the
board would free up space to lay down the capacitors, making it possible to place
further boards atop the Motor Shield.

Because the heat has to travel through the board to the heatsink thermal perform-
ance is lacking when using D2PAK (TO-263) transistors. Better performance could
be gained from standing TO-220 with a larger cooling block attached.

To accommodate a wider set of differing power applications a split board ap-
proach might prove beneficial. The Motor Shield manufactured has 105 jym copper
thickness with rather large clearances, even for the low voltage, low current traces.
Though thick copper and large clearances are needed for the power transistors, it is
redundant for the gate driver stage. The driver stage would be on one board with
a series of connectors for attaching either one of a selection of dedicated transistor
boards, or individual transistors with custom cooling. With such a solution the us-
ability of the ARC and Motor Shield is improved. However, the many configuration
options might be confusing and large number of differing boards affect the total cost
for customers.

4.5.3 Code improvements

Though all new functions have been implemented, it is not certain that their current
placements are optimal. Re-evaluation of whether the amplifiers and comparators
should be part of the immediate core or moved to separate libraries should be done.

A cohesive Motor Shield library is still missing, the difficulty in writing one
should not be very high.

All references to MCUSs in the Arduino core should be removed from the code
base, leaving only specific ATmega32/64 code. This is a simple, though perhaps
time consuming, task.

Proper documentation of the code and the new functionalities is missing. The
main README file is still unchanged and written by Arduino. Also this task is
easy but time consuming.

Page 28 of 45

Appendix A. Pin Mapping

Page 29 of 45

Appendix A. Pin Mapping
MCU Board

Port pin | Function pin
VCC 4 | VCC oV
GND 5| GND GND
AVCC 19 | AVCC oV
AGND 20 | AGND GND
AREF 21 | AREF AREF
PBO 8 | PSCOUT2A / MISO 12
PB1 9 | PSCOUT2B / MOSI 11
PB2 16 | ADC5/INT1/ ACMPNO A1 (19)
PB3 23 | AMPO- 4
PB4 24 | AMPO+ E1(15)
PB5 26 | ADC6/INT2 / ACMPN1 / AMP2- 2
PB6 27 | PSCOUT1B 5
PB7 28 | PSCOUTOB / SCK 13
PCO 30 | PSCOUT1A /INT3 3
PC1 3 | PCSIN1/0OC1B/SS_A 9
PC2 6 | TXCAN E3 (17)
PC3 7 | RXCAN E2 (16)
PC4 17 | ADC8/ AMP1-/ ACMPN3/(SCL) A5 (23)
PC5 18 | ADC9/ AMP1+/ACMP3/(SDA) A4 (22)
PC6 22 | ADC10/ ACMP1 A0 (18)
PC7 25 | D2A / AMP2+ EO (14)
PDO 29 | PSCOUTOA 10
PD1 32 | PSCINO 8
PD2 1 | OC1A /PSCIN2 / MISO_A 6
PD3 2 | TXD/TXLIN/SS/OCO0A /MOSI_A 1
PD4 12 | RXD /RXLIN / SCK_A 0
PD5 13 | ADC2/ ACMP2 A2 (20)
PD6 14 | ADC3/ ACMPN2 /INTO A3 (21)
PD7 15 | ACMPO 7
PEO 31 | RESET Reset
PE1 10 | XTAL1/OCO0OB
PE2 11 | XTAL2/ ADCO

Table A.1: Table showing the connections of the MCU to the board pinout.

Page 30 of 45

Pin Mapping

Appendix A.

‘uonduny urd ay 03 dn yojew papjoq swal] ‘pieoq 3y} uo urd yoes jo suonduny ay) urmoys 3[qeL, :¢'V d[qeL
TdINDV 01DAV 90d 0V

ONdINDV §DAV TINI zad 1V

ZdNDV DAV sad cv

INdNDV €DaV 0LNI 9ad €V

+TdINV ¢dINDV 6DQaV - vas <Sod +vv

TNV ENdINDV 8DAV - T0S #Dd SV

+2dINV vea enxa £Dd 0d

+0dINV enx? pdd TH

NVDOXH enxes ¢dDd 7H

NVDXL enxe 7od ¢€d

1Dav axy X1 $Ad 0

V02O SS/aX.L X1 ead T

-ZdNV INdINDV ~ 9DaV CZINI wr o gdd ¢

VILNODSd €INI wyumd 0Dd €
-0dINV cad v

d1.1.N0DSd LDAV wmd 9gd S
ZNIDSd VIDO wumd zad 9
0dINDV (ad L

ONIDSd 1ad 8
INIDSd 4100 wmd 1Dd 6
V0LN0DSd (ss)yumd oad o1
d¢1N0DSd ISON | 1sowyumd 19d IT
VZL1N0DSd OSIN ostt 0gdd ¢TI
d01.N0DSd yOAV MDS ¥s/pa] Ldd €1
NSd Byndwy ‘pig 1ojeredwo) Foeuy 1dniLU] UOTEDIIUNWILLOD) amiesa wMog uig

Page 31 of 45

Appendix B. Uniti ARC Design
Files

Page 32 of 45

Appendix B.

ARC Design Files

Quantity Value / Name Package Description

2 1 MQ 0603 Resistor

1 3002 0603 Resistor

2 60 €2 0603 Resistor

1 10k CAY16 Resistor

2 1kQ CAY16 Resistor

1 222 CAY16 Resistor

8 100 nF 0603 Capacitor

2 1pF 0603 Capacitor

2 22 pF 0603 Capacitor

1 4700 pF 0603 Capacitor

2 A7 pF Panasonic Capacitor

1 10 pH 2012 Inductor

1 BLM21 0805 Ferite

2 CGO0603MLC-05E 0603 Varistor

1 MF-MSMF050-2 L1812 Fuse

1 M7 SMB Diode

2 CD1206-S01575 MINIMELF Diode

3 Yellow LED 0805 LED

1 Green LED 0805 LED

2 3x2 Male Pinheader

1 2x2 Male Pinheader

1 10x1 Female Pinheader

2 8x1 Female Pinheader

2 6x1 Female Pinheader

1 USB B Port USB B USB Connector
1 Power Jack Power Connector
1 SKHMPSEO010 Button

1 ATMEGA32/64M1 TQFP-32 Main MCU

1 ATMEGA16U2 QFN-32 USB Interface MCU
1 MCP2561-E/SN SOIC-8N CAN Tranceiver
1 LMV358IDGKR MSOP-08 Operational Amplifier
1 FDN340P SOT-23 PMOS Transistor
1 NCP1117ST50T3G SOT-223 5V Regulator

1 LP2985-33DBVR SOT-23 3.3 V Regulator

1 16MHz QS Crystal

1 CSTCE16MOV53-R0 Resonator

Table B.1: Bill of Materials for Uniti ARC

Page 33 of 45

ARC Design Files

Appendix B.

Hez OENY

Vg 3 OXEn e
— Hee 8ENY
g 3 e e
s MOTIEA
WSHAXXYDINLY ano
% (4)NW-2N9LYDINLY T annod)
KRtz ——{ 0ad(oLnrE000) avd)= 80 .
N—H —— +ad(LLINI/ONIV) 58 il Iﬁ =
20d(2LNI/LNIV/LaxXH) anon i3 T L%
A TXISN % e =15
m o e oonn [2 L]
S vQd T Wl 9Qd(9LNI/SNIV/SLH) dvon M <ijk
9 £0d NS s 2ad(zinow) & s
Pz 2ad - Q 9
L] \ad & =1 20d(LLINIDd/ZNIV) aNoe | 8 ryng
101 0ad @ = ¥0d0LINIOd) Q00 2~
O EBNg S S 92 v 3 3
- Ng ik § < 50d(E100/61NIOd) < =!
SIS Y6 e 5| 90d(8LNIOdVLO0 o 5
434V " o S| £0d(03410/kdOIPLNI) felel\ e S
aNov - - il v
Q0AY m Jegee | @
TB ST 08d(0LNIOd/SS) 1IvLX fo) VENE =T
s ano o 19 z bgg=c=
Q : *
Bs Q0A o o9 ,xo_ﬁ M" 28d(2LNIOd/ISON/ad) (00d)zTvLX = deNg Hez Lol a_
L = ST €8d(ELNIOd/OSINOAd)
8K S 13534 & Lﬂmﬂ# Y8d(rLNIOd/LL)
e " & 2 a5 S8d(SLNIOd) (Manod)13s3d Py TISTg
8 2 VY oo 9 oz 98d(91NIDd) @}
om g T~ mmum 7= £8d(0100/V000/LINIOd) © —
2 =
i o [RR m B S ano
3
7 Bl
2l £ ¥ g (|2 1dSOl
[& D
J] 1 S El S
2 SO 2 Ie MOS
vap J] -wexe H T OSTI
0B al W exe
Ty h il iy Q O ano ano
O Oz YUNgOEE-G86Zd u| =
edr - P G+ =}
o awon ano - A g
ni &
€0 lﬂ 440NO . S
i
T tacTg 110 N Ip ST L2 L OONESTT
I nE™
NS/3-1952dON PEREL] 4
ano Iz "
T o
S SBH-1x8 AS*
e L uoot e
VO Aals [T ane ano ano ano
1nds aon =
HNYD axi T NVDOXT
O [STNVORE pg+
- HLd)OVI H3IMOd
N A SrCuHl NIHMd AS+

NG+

vl e
DELO0GLSLLHEHON
n

Schematic of Uniti ARC, First Prototype

Figure B.1

Page 34 of 45

Appendix B. ARC Design Files

1
(o]

AN

a)

Of\

3]
N7

AEO(

Figure B.3: Bottom layer layout of Uniti ARC, First Prototype

Page 35 of 45

Appendix B. ARC Design Files

Y
Rl o) JC)

Figure B.5: Bottom layer layout of Uniti ARC, Second Prototype

Page 36 of 45

Appendix C. Motor Shield Design
Files

Page 37 of 45

Appendix C.

Motor Shield Design Files

Quantity Value / Name Package Description

6 102 0603 Resistor

11 560 €2 0603 Resistor

9 1k2 0603 Resistor

3 2.2kQ 0603 Resistor

4 20k 0603 Resistor

7 100 k€2 0603 Resistor

1 47k} 1206 Power dissipater

3 22 kO 0805 NTC Varistor

4 22nF 0603 Ceramic Capacitor

19 100 nF 0603 Ceramic Capacitor

3 22 nF E2-5 Electrolytic Capacitor

1 330 pF E5-13 Electrolytic Capacitor

3 470 nF E7,5-16 Electrolytic Capacitor

1 470 pF E3,5-8 Electrolytic Capacitor

1 330 pH Bourns SRR1260A, Inductor

5 NXP PMEG6002E] SOD323F Schottky Diode

1 LED 0805 Power Indicator

7 Toshiba TLP2345 SOP-5 Optocoupler
Broadcom

1 ACPL-247-500E SOIC-16 Optocoupler
Texas Instruments . .

1 L.M339D SOIC-14N Differential Comparator
Texas Instruments

1 TLI575HV TO263-5 12V Regulator

3 Infineon IR2110S SOIC-16W MOSFET Gate Driver

6 Infineon IRFS3207Z D2PAK MOSFET Transistor

6 Fischer Elektronik For D2PAK Heatsink
FK244-13 etc.

1 6 pin, single row Female Header

2 8 pin, single row Female Header

1 10 pin, single row Female Header
Phoenix Contact 5.08 mm .

1 SMKDS3/3-5,08 pitch Screw Terminal Block
Phoenix Contact 5.08 mm .

1 SMKDS3/2-5,08 pitch Screw Terminal Block

Table C.1: Bill of Materials for Uniti ARC Motor Shield

Page 38 of 45

Motor Shield Design Files

Appendix C.

aN!

S
on 2IOHO maoRID
as—on |

300NV
ugoL. FdORV
l{ 200 g cm
Vs &

Schematic of Uniti ARC Motor Shield
Page 39 of 45

1

a6eEN 3
3
@ % .
ano
o] o
% 5 0 on 2IOHIY ImTa0mI
i SSA On 3AONY
S-/g° oot Fdogy [BeInoTsa
80°G-6/5' INSQY N s oon Epiey
16X ~ e
80 YR
ZasvHy, ¢XO ook T p—
2 SOND FAOHYD (=5
UOGI OA
3 son 90N oy FeInousa
N e e
o 3
Ve
3
— AS 2 Ay <
LS ano
4 aNo
i~ MH] o Hmo | o JAOHIYO | —=eBmTva
104 < SA 5w
z%wmmmzn visn (0] i _ Tuoot oon 0OV dogv [EVINOOSE
TITO0S +__Tuoot N S [
HHITOX | 26X U 5o 90A o g
R A I 2 V< W=
. :
= [TR gy L
IO - YR o i i FAOHIYO. —=q6HIvY)
LS Y NS T 7] aon far o] on
Iﬂﬂddmdlo - —k T ”w 3 om | o oon CON ooy TINOoSd
~HCITO0Sd 7]< AT T M 4 @&_ < o I gre
005 JeIsaEmon 2 v 3
—HUIooSd 9% [z 33501 oW =
T ON9 T ¢ LT o mon 2 %
43UV TOW 2 -
s s £ 1s —
£ | - HoL)
EAS <] 2 IR B or| SSA 1D on AORHID) JAOHIVO|
% s 8 & 4 0zesH| 14 < o SA SR Oh -
. ¢ 918N WOD Fdogv | 8uInoosd
FPF _.Qmmlﬁ 80'52/S' INSTIN 4. Juoot gl*
22X ode, % Vs 55r—] 99N =
o Q @ + noy | nosy | vozy) £
2 2 2| ® 00 3 0_asvHd ZEXO; TR iz e
S 32 ‘
- 80'6-2/S" INS! o MN. 2 T e @ JAOHIYO | —=aEmTa
1nd1no Lex [erd
Nttt "~ = on Lo FAONY I~ dony OINOoSd
>Ovaa3ad &A = 4 aul ar
B @ % 55190 3
o 23
o A

80'G-E/S

Figure C.

Appendix C. Motor Shield Design Files

=
,
\ |

x

N (1

v k} 7 o0
//\m/\\\ § /K

Figure C.2: Top layer layout of Uniti ARC Motor Shield

Figure C.3: Bottom layer layout of Uniti ARC Motor Shield

Page 40 of 45

Appendix C. Motor Shield Design Files

Figure C.4: Top layer layout of Uniti ARC Motor Shield

Figure C.5: Bottom layer layout of Uniti ARC Motor Shield

Page 41 of 45

References

[1] P. A. Laplante, Dictionary of Computer Science, Engineering and Technology.
CRC Press, Dec. 2000, google-Books-ID: UIM3clUwCfEC.

[2] “Arduino - Motor Shield R3.” [Online]. Available: https://www.arduino.cc/
en/Main/ArduinoMotorShieldR3

[3] “Formula Student | Bringing Engineering to Life.” [Online]. Available:
http://www.formulastudent.lu.se/

[4] “MVKNO5 Projekt - Formula Student.” [Online]. Available: http://www.ce.
energy.lth.se/kurser/mvkn05_projekt_formula_student/

[5] “ATmega32M1 Automotive.” [Online]. Available: http://www.atmel.com/
devices/atmega32m1-automotive.aspx

[6] “ISO 11898-1:2015 - Road vehicles — Controller area network (CAN) — Part
1: Data link layer and physical signalling.” [Online]. Available: http:/www.
iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63648

[7] “Uniti ingenious electric car.” [Online]. Available: http://www.unitisweden.
com/

[8] “Creative Commons.” [Online]. Available: https://creativecommons.org/

[9] “Arduino - UNO.” [Online]. Available: https://www.arduino.cc/en/Main/
ArduinoBoardUno

[10] “Cadsoft - Eagle.” [Online]. Available: https://cadsoft.io/

[11] “Uniti ARC Hardware - GitLab.” [Online]. Available: https://gitlab.com/uniti-
arc/Arc-eagle

[12] “GNU General Public Licence, v2.” [Online]. Available: https://www.gnu.
org/licenses/gpl-2.0.html

[13] “Arduino - GitHub.com.” [Online]. Available: https://github.com/arduino/
Arduino

Page 42 of 45

References

[14] “Uniti ARC Software - GitLab.” [Online]. Available: https://gitlab.com/
wrafter/Arc

[15] S. Colton, “Arduino HexBridge Shield v2.0.” [Online]. Available: http:
//scolton.blogspot.com/2010/06/arduino-hexbridge-shield-v20.html

[16] S. Cording, “codinghead/Arduino.” [Online]. Available: https://github.com/
codinghead/Arduino/tree/allegro

[17] A. Thomason, “thomasonw/ATmegaxxM1-C1.” [Online]. Available: https:
//github.com/thomasonw/ATmegaxxM1-C1

[18] “ATmega328P.” [Online]. Available: http://www.atmel.com/devices/
atmega328p.aspx

[19] “AVRISP mkII.” [Online]. Available: http://www.atmel.com/tools/
AVRISPMKII.aspx

[20] “avr-gcc - GCC Wiki.” [Online]. Available: https://gcc.gnu.org/wiki/avr-gcc

[21] “AVR Libc Home Page.” [Online]. Available: http://www.nongnu.org/avr-
libc/

[22] “AVRDUDE - AVR Downloader/UploaDEr.” [Online]. Available: http:
//'www.nongnu.org/avrdude/

[23] “Gnu make.” [Online]. Available: https://www.gnu.org/software/make/
[24] “Git.” [Online]. Available: https://git-scm.com/

[25] “MCP2561 - Interface- Controller Area Network (CAN).” [Online]. Available:
http://www.microchip.com/wwwproducts/en/MCP2561

[26] “TLP2345 | Photocouplers / Photorelays | TOSHIBA Storage & Electronic
Devices Solutions Company.” [Online]. Available: https://toshiba.semicon-
storage.com/eu/product/opto/photocoupler/detail.html

[27] “Products - Infineon Technologies - 1IR2110.” [Online]. Avail-
able: http://www.infineon.com/cms/en/product/power/motor-control-
and-gate-driver-ics/non-isolated-gate-driver-ics-and-controllers/general-
purpose-gate-driver-ics-industrial/TIR2110/productType.html?productType=
5546d462533600a401533d22a6185782

[28] “Products - Infineon Technologies - IRFS3207Z.” [Online]. Available:
http://www.infineon.com/cms/en/product/power/power-mosfet/20v-300v-
n-channel-power-mosfet/80v-100v-n-channel-power-mosfet/IRFS3207Z/
productType.html?productType=5546d462533600a401533d3c64b33f17

Page 43 of 45

References

[29] “FK244_13_d2_pak_, Heatsinks for D PAK and others, Heatsinks f cool, Fisc-
her Elektronik.” [Online]. Available: http://www.fischerelektronik.de/web_
fischer/en_GB/heatsinks/C04/Heatsinks%20for%20D%20PAK%20and%
20others/PR/FK244_13_D2_PAK_/$productCard/parameters/index.xhtml

[30] “Vishay - Glass Protected NTC Thermistors.” [Online]. Available: http:
//'www.vishay.com/product?docid=29056

[31] “Controlling Sensorless BLDC Motors via Back EMF | DigiKey.”
[Online]. Available: http://www.digikey.com/en/articles/techzone/2013/jun/
controlling-sensorless-bldc-motors-via-back-emf

[32] “TL2575hv-12 | Buck Converter (Integrated Switch) | Step-
Down (Buck) | Description & parametrics.” [Online]. Avail-
able: http://www.ti.com/product/TL2575HV-12?keyMatch=tI12575hv-

12ikttr&tisearch=Search-EN-Everything

[33] “ATmegal6U2.” [Online]. Available: http://www.atmel.com/devices/
atmegal6u?.aspx

[34] “Four Walled Cubicle - LUFA (Formerly MyUSB).” [Online]. Available:
http://www.fourwalledcubicle.com/LUFA.php

[35] “USB.org - Getting a Vendor ID.” [Online]. Available: http://www.usb.org/
developers/vendor/

[36] “pid.codes.” [Online]. Available: http://pid.codes/

[37] “Arduino - Mega.” [Online]. Available: https://www.arduino.cc/en/Main/
ArduinoBoardMega2560

[38] “Arduino - Leonardo.” [Online]. Available: https://www.arduino.cc/en/Main/
ArduinoBoardLeonardo

[39] “Arduino - Micro.” [Online]. Available: https://www.arduino.cc/en/Main/
ArduinoBoardMicro

[40] “ATmega32U4.” [Online]. Available: http://www.atmel.com/devices/
atmega32u4.aspx

[41] “Arachnid Labs.” [Online]. Available: http://www.arachnidlabs.com/blog/
2013/10/18/usb-if-no-vid-for-open-source/

[42] “Developing, Testing, and Deploying Drivers.” [Online]. Available: https:
//msdn.microsoft.com/en-us/windows/hardware/drivers/develop/index

Page 44 of 45

[43] “Practical Windows Code and Driver Signing.” [Online]. Available: http:
//www.davidegrayson.com/signing/

[44] “Inf2cat.” [Online]. Available: https://msdn.microsoft.com/en-us/windows/
hardware/drivers/devtest/inf2cat

[45] “WDK and WinDbg downloads - Windows Hardware Dev Center.” [On-
line]. Available: https://developer.microsoft.com/en-us/windows/hardware/
windows-driver-kit

[46] “STM32f303re - Mainstream Mixed signals MCUs ARM Cortex-M4 core
with DSP and FPU, 512 Kbytes Flash, 72 MHz CPU, MPU, CCM,
12-bit ADC 5 MSPS, PGA, comparators - STMicroelectronics.” [Online].
Available: http://www.st.com/content/st_com/en/products/microcontrollers/
stm32-32-bit-arm-cortex-mcus/stm32f3-series/stm32f303/stm32f303re.html

Page 45 of 45

